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Abstract

Background: Little is known about the heterogeneous etiology of suspected non-Alzheimer’s pathophysiology
(SNAP), a group of subjects with neurodegeneration in the absence of β-amyloid. Using antemortem MRI and
pathological data, we investigated the etiology of SNAP and the association of neurodegenerative pathologies with
structural medial temporal lobe (MTL) measures in β-amyloid-negative subjects.

Methods: Subjects with antemortem MRI and autopsy data were selected from ADNI (n=63) and the University of
Pennsylvania (n=156). Pathological diagnoses and semi-quantitative scores of MTL tau, neuritic plaques, α-synuclein,
and TDP-43 pathology and MTL structural MRI measures from antemortem T1-weighted MRI scans were obtained.
β-amyloid status (A+/A−) was determined by CERAD score and neurodegeneration status (N+/N−) by hippocampal
volume.

Results: SNAP reflects a heterogeneous group of pathological diagnoses. In ADNI, SNAP (A−N+) had significantly
more neuropathological diagnoses than A+N+. In the A− group, tau pathology was associated with hippocampal,
entorhinal cortex, and Brodmann area 35 volume/thickness and TDP-43 pathology with hippocampal volume.

Conclusion: SNAP had a heterogeneous profile with more mixed pathologies than A+N+. Moreover, a role for
TDP-43 and tau pathology in driving MTL neurodegeneration in the absence of β-amyloid was supported.

Keywords: Suspected non-Alzheimer’s pathophysiology, Neuropathologies diagnosis, Neurodegenerative
pathologies, Hippocampus, Medial temporal lobe, Neurodegeneration, Primary age-related tauopathy, Limbic-
predominant age-related TDP-43 encephalopathy

Background
In 2011, a framework for the preclinical stage of Alzhei-
mer’s disease (AD) was proposed in which it was argued
that β-amyloid deposition is followed by neurodegenera-
tion and then subtle cognitive impairments [1]. In the
context of this proposed sequence, individuals, including

cognitively normal adults [2] and patients with mild cog-
nitive impairment (MCI) [3], who display evidence of
neurodegeneration but no β-amyloid deposition, fell into
a category of suspected non-Alzheimer’s pathophysi-
ology (SNAP). Similarly, in the new β-amyloid/tau/(neu-
rodegeneration) (A/T/(N)) framework [4, 5], β-amyloid
negative, tau negative, and neurodegeneration positive
(A−T−N+) and A−T+N+ would be considered SNAP.
The prevalence of SNAP is reported to be between 17
and 35%, both in cognitively impaired and unimpaired
[6], with similar reported prevalences when applying A/
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T/(N) SNAP categories [7]. Adding to the clinical signifi-
cance of this category, SNAP has been reported to show
clinical and cognitive decline [8–10] and ongoing neuro-
degeneration [10, 11] compared to their biomarker-
negative counterparts, though not in all studies [12–14].
Evidence for clinical progression has more frequently
been reported in MCI-SNAP than cognitively normal
SNAP individuals (CN-SNAP). However, the inconsist-
ent findings on their clinical course may also be attribut-
able to the heterogeneity in defining SNAP and the
inherent heterogeneous nature of SNAP. In fact, the se-
lection of the study population in extant studies likely af-
fects the findings regarding the clinical course,
demographics, and etiology of SNAP.
Regarding etiology, previous studies have revealed that

SNAP individuals have increased cerebrovascular disease
(CVD) [14, 15] and lower prevalence of APOE-ɛ4 car-
riers than their β-amyloid-positive counterparts [6], but
the evidence regarding a role for subthreshold β-amyloid
pathology has been inconsistent [14, 16]. While similar-
ities between SNAP and primary age-related tauopathy
(PART) have been pointed out [17] and ~23% of the A
−N+ group was recently reported to be T+ [7], no evi-
dence for elevated tau levels in SNAP was found in one
recent relatively small study [18]. In conclusion, little is
known about the heterogeneous etiology of SNAP, espe-
cially with regard to potential contributors that cannot
be determined in vivo, such as TAR DNA-binding pro-
tein (TDP)-43, often associated with hippocampal scler-
osis, α-synucleinopathy, and PART. Moreover, given the
high prevalence of multiple pathologies in cognitively
impaired, but also cognitively normal individuals [19,
20], it is likely that a considerable portion of SNAP indi-
viduals harbor more than one pathology.
We therefore aimed to investigate (1) the neuropatho-

logical diagnoses of SNAP compared to A+N+ and A−N
− groups and (2) the association of neuropathology mea-
sures with structural measures of medial temporal lobe
(MTL) subregions in β-amyloid-negative subjects. To
encompass datasets with different proportions of non-
AD clinical phenotypes, we examined data from both
the ADNI cohort and the University of Pennsylvania
Center for Neurodegenerative Disease Research (here-
after referred to as the UPenn dataset). Subjects in the
ADNI cohort are relatively older and have a more am-
nesic phenotype, whereas subjects in the UPenn dataset
are relatively younger and have a wider range of
phenotypes.

Methods
Study population
ADNI dataset: Data used in the preparation of this art-
icle were obtained from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) database (adni.loni.usc.edu).

The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), posi-
tron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s dis-
ease (AD). For up-to-date information, see www.adni-
info.org.
In ADNI, all subjects with available pathology data

and a structural T1-weighted MRI at baseline were se-
lected. See supplemental material for more information
on ADNI. A total of 64 participants in ADNI had an
available T1-weighted MRI at baseline and autopsy data
available, of which 1 was excluded due to image quality,
leaving 63 for the analyses.
UPenn dataset: Patient data were abstracted from the

University of Pennsylvania Integrated Neurodegenerative
Disease Database [21]. Patients selected were clinically
evaluated and followed at the University of Pennsylva-
nia’s Alzheimer’s Disease Core Center, Parkinson’s dis-
ease and Movement Disorder Clinic, Frontotemporal
Degeneration Center, or the Michael J. Crescenz VA
Medical Center’s Parkinson’s Disease Research, Educa-
tion, and Clinical Center. For this study, subjects with
neuromuscular disease (i.e., amyotrophic lateral scler-
osis) or primarily a motor disorder (i.e., Parkinson’s dis-
ease) were excluded. We did not exclude patients with
progressive supranuclear palsy (PSP) or corticobasal de-
generation (CBD) as these diseases are also characterized
by prominent cognitive symptoms. All patients with a
research quality antemortem MRI were included in this
study. A total of 207 participants had a research quality
MRI and autopsy data available. Of these 207 partici-
pants, 45 had a neuromuscular disease or motor disorder
(i.e., PD or ALS) and were excluded and 6 were excluded
due to image or segmentation quality, leaving 156 partic-
ipants for the analyses.
Both datasets are research cohorts and are recruiting

participants from tertiary care centers. Where ADNI re-
quires a more restricted phenotype of either cognitively
normal older adults or patients with a clinical diagnosis
of amnesic MCI or AD, the UPenn dataset includes clin-
ically evaluated patients who agree to participate in re-
search, but with a broader phenotype.

Imaging protocol and image processing
ADNI data: The MRI scans were acquired from different
scanners at multiple sites. Up-to-date information about
MRI imaging protocols can be found at adni.loni.us-
c.edu/methods/mri-tool/mri-analysis. The resolution of
the scans ranged from 0.94 × 0.94 × 1.2 to 1.25 × 1.25 ×
1.2 mm3. The MRI at baseline was selected to capture
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SNAP at its earliest clinical phase to match prior work
in ADNI.
UPenn data: In all patients, antemortem T1 structural

MRI data was obtained, but a variety of protocols with
resolutions ranging from 0.5 × 0. × 1 mm3 to 1.25 ×
1.25 × 1.20 mm3 were performed. The MRI scan closest
to the date of death was extracted.

Automated segmentation of MTL subregions
MTL subregions were automatically segmented using
the Automated Segmentation of Hippocampal Sub-
fields (ASHS) package and a new T1-weighted seg-
mentation pipeline (ASHS-T1) [22, 23]. Note that this
new segmentation protocol offers the advantage of ac-
counting for confounds of dural tissue and anatomic
variation of the collateral sulcus. Six regions were
segmented: the anterior and posterior hippocampus,
the entorhinal cortex (ERC), Brodmann areas (BA) 35
and 36, and the parahippocampal cortex (PHC). An
example of the ASHS-T1 segmentation is displayed in
Fig. 1. Intracranial volume (ICV) was also measured
using ASHS-T1 [23]. All segmentations were visually
inspected. Failed segmentations were manually edited

when feasible. Segmentations were excluded when the
segmentation was clearly inaccurate and could not be
edited because the borders could not be identified ei-
ther because of poor image quality or too severe atro-
phy. In ADNI, hippocampal volumes for 1 subject
were excluded. In the UPenn dataset, hippocampal
volumes for 6 subjects were excluded. Volumes were
analyzed for the hippocampal regions and thickness
was obtained for the MTL cortical regions using a
multi-template thickness analysis pipeline [23].
Cortical thickness measures for ERC, BA35, BA36, and

PHC were used for the analyses investigating correlation
with pathologies. For ADNI, the ERC, BA35, and BA36
were excluded for 4 subjects and PHC for 2 subjects
based on image or segmentation quality in this region.
For the UPenn dataset, the ERC was excluded for 21
subjects, BA35 for 16 subjects, BA36 for 17 subjects, and
PHC for 9 subjects.
All MTL regions were averaged over the left and right

hemispheres. Hippocampal volumes were corrected for
ICV and age and thickness in MTL cortical regions for
just age using the regression coefficients from a separate
group of 184 β-amyloid-negative cognitively normal

Fig. 1 Example of an automated segmentation of medial temporal subregions using the automated segmentation of hippocampal subfields
(ASHS)—T1 pipeline
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older adults from ADNI-GO/2 (mean age 71.7±6.1
years). β-amyloid status was determined based on the
standard cutoff of SUVR ≥1.11 using florbetapir PET
scans [24].

β-amyloid and neurodegeneration status
The neurodegeneration cutoff was obtained by taking
the 90th percentile of hippocampal volumes of β-
amyloid-positive AD patients at baseline from ADNI-
GO/2. β-amyloid status was determined based on the
standard cutoff of SUVR ≥1.11 using florbetapir PET
scans [24]. Taking the 90th percentile of hippocampal
volumes, or other neurodegeneration measures of β-
amyloid-positive AD patients is a common approach to
emphasize sensitivity, but potentially at the cost of speci-
ficity [2, 3, 25]. Note that β-amyloid status was only de-
termined by PET to correct MTL structural measures
for ICV and age (previous section) and to determine
neurodegeneration cutoff.
To make our study comparable to previous literature,

we initially aimed to determine β-amyloid status using
in vivo measures. However, in vivo biomarkers of β-
amyloid were not available in all participants close to the
time of the MRI scan. We therefore chose a pathology
cutoff based on the detection level of PET [26] and
based β-amyloid status on a CERAD score ≥B for β-
amyloid positivity (A+; A+/− only refers to β-amyloid
status determined by the CERAD score). This is a con-
servative cutoff for A− cases, as, if anything, amyloid
levels would be expected to be lower at the time of the
in vivo MRI scan. All analyses presented in the “Results”
section utilize the β-amyloid status based on the CERAD
score.
To further confirm how well β-amyloid status based

on the CERAD score matches that of β-amyloid PET,
which is often used to determine SNAP, we compared
the cutoff of the CERAD score to the standard cutoff for
the florbetapir scan for 30 subjects in the ADNI dataset
for whom a florbetapir scan was available. The scan at
the latest available timepoint was selected. The two cut-
offs showed an agreement of 87.6% (3 subjects with a
positive β-amyloid PET scan were β-amyloid negative
based on the CERAD cutoff, and 1 subject with a nega-
tive β-amyloid PET scans was β-amyloid positive based
on the CERAD cutoff), see Supplementary Table 1.

Neuropathological diagnoses and neuropathology
measures
For both datasets, the number of neuropathological
diagnoses for each individual was counted. Note that
for ADNI up to five different neuropathological diag-
noses were provided based on convention, while
there were up to three for the UPenn dataset. Add-
itionally, for each of the studies, AD neuropathologic

change (ADNC) was established according to the cri-
teria of Montine et al. [27]. Intermediate to high
ADNC was taken as the presence of AD. Primary
age-related tauopathy (PART) was established based
on a CERAD score of 1 or lower (“possible” and
“definite” PART, respectively) and a Braak score of 4
or lower [28].
ADNI data: All autopsies were performed at the re-

spective site. Most brains were fixed with formalin, ex-
cept for two which were fixed with paraformaldehyde.
The tau-antibody used was PHF-1 in 61 cases and a
non-phospho-specific tau stain in 1 case. The β-amyloid
antibody was 10DS for all cases and the α-synuclein
antibody was a phospho-specific (e.g., pSYN#64) one for
all cases. The TDP-43 antibody was a phospho-specific
one except for one case where it was a non-phospho-
specific one. ABC scores were established using the
NIA-AA protocol [27]. The scoring system for β-
amyloid neuritic plaques, tau, α-synuclein Lewy bodies
(LB), and TDP-43 neurocytoplasmatic inclusion score is
shown in Supplementary Table 2. As the present study
specifically focused on the MTL, a composite score was
calculated by averaging the scores of CA1, ERC, and
amygdala for each lesion of interest (tau, β-amyloid,
TDP-43, and α-synuclein). MTL data for β-amyloid, tau,
and α-synuclein was missing in one case and for TDP-
43 in two cases.
UPenn data: All autopsies were performed at the

Penn Center for Neurodegenerative Disease Research
(CNDR). Thirteen regions are routinely examined in
the CNDR neuropathology evaluations as described in
previous publications [21]. More precisely, tissue was
embedded in paraffin blocks and cut into 6-μm sec-
tions for immunohistochemistry using the following
primary antibodies: NAB228 (monoclonal antibody
[mAb], 1:8000, generated in the CNDR) to detect β-
amyloid deposits, phosphorylated tau PHF-1 (mAb, 1:
1000, a gift from Dr. Peter Davies) to detect phos-
phorylated tau deposits, TAR5P-1D3 (mAb, 1:500, a
gift from Dr. Manuela Neumann and Dr. E. Krem-
mer) to detect phosphorylated TDP-43 deposits, and
Syn303 (mAb, 1:16,000, generated in the CNDR) to
detect the presence of pathological conformation of
α-synuclein. Each region was assigned a semi-
quantitative score, i.e., none (0), rare (0.5), mild (1),
moderate (2), or severe (3) for individual lesions (tau,
neuritic plaques, TDP-43, and α-synuclein patholo-
gies). Similar as for the ADNI data, a composite score
for the MTL was calculated by averaging the scores
of CA1/subiculum, ERC, and amygdala for each lesion
of interest (tau, β-amyloid, TDP-43, and α-synuclein).
MTL data for β-amyloid and tau was missing in three
cases, for α-synuclein in two cases, and for TDP-43
in six cases.
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Note that in both datasets the tau pathology score
does not only reflect neurofibrillary tangles (NFT) but
represents multiple conformations of tau and is there-
fore referred to as tau and not NFT.

Statistical analyses
We compared SNAP with the A−N− and the A+N+
groups (to minimize the number of comparisons, we did
not analyze the A+N− group in this study). Demograph-
ics, number, and presence of neuropathological diagno-
ses were compared with a Mann-Whitney U test for
continuous and Fisher’s exact test for categorical vari-
ables. Only the neuropathological diagnoses with the
highest prevalence were analyzed in comparisons of
diagnostic categories to limit the number of analyses.
The association of MTL MRI measures with MTL

pathology measures in the A− group was assessed using
a Spearman correlation, corrected for time between MRI
and death and sex using the R package “ppcor.” All tests
were two-tailed. Because autopsy data is so rare, we used
a liberal detection threshold of p=0.05 two-tailed for all
tests.

Results
Demographics
ADNI dataset: 22.2% of the participants met the criteria
for SNAP (Table 1). The groups were not different in
terms of age, but the SNAP group had a longer time
interval between MRI and date of death than A+N+ at a
trend level and a larger proportion of males than A+N+
and A−N− at a trend level.
UPenn dataset: 30.1% of the participants met the cri-

teria for SNAP (Table 1). The groups were not different

in terms of gender, but the A+N+ group was signifi-
cantly older than SNAP and had a significantly longer
time interval between MRI and date of death.
Clinical diagnosis at MRI scan and latest clinical diag-

nosis can also be observed in Table 1. Qualitatively, it
can be observed that the groups in the UPenn dataset
are more severely impaired with a larger percentage of
dementia and no cognitively normal individuals, as com-
pared to the ADNI dataset.

Neuropathological diagnoses
ADNI dataset: Despite similar age, the SNAP group
had a higher number of different neuropathological
diagnoses per individual than A+N+ (p<0.001) but
not A−N− (p=0.13; Fig. 2a). When analyzing the spe-
cific neuropathological diagnoses, it can be observed
that, qualitatively, SNAP had a high prevalence of pri-
mary age-related tauopathy (PART), TDP-MTL
(which would likely be classified as limbic-
predominant age-related TDP-43 encephalopathy, or
LATE, with new criteria [29]), argyrophilic grain dis-
ease (AGD), and Lewy body disease (LBD) (Fig. 3a).
Compared to A+N+, SNAP had a significantly higher
prevalence of AGD, LBD, and PART, as well as a sig-
nificantly lower prevalence of AD.
UPenn dataset: There was no significant difference be-

tween the number of pathological diagnoses in each of
the groups (Fig. 2b). Qualitatively, SNAP had a relatively
high prevalence of frontotemporal lobar degeneration
with TDP-43 inclusions (FTLD-TDP), PART, and pro-
gressive supranuclear palsy (PSP; Fig. 3b). There were no
significant differences between SNAP and A−N− in the
prevalence of any of the diagnostic categories. The A+

Table 1 Demographics of the ADNI and UPenn datasets

ADNI UPenn

A−N− SNAP A+N+ A−N− SNAP A+N+

Number (%) 6 (9.5) 14 (22.2) 35 (55.6) 11 (7.1) 47 (30.1) 76 (48.7)

Age at death (years) 84.5±3.8 83.6±8.4 82.0±6.9 68.6±5.9 68.9±9.8 74.2±11.8*

Gender (% male) 4 (66.7)◊ 14 (100) 27 (77.1)◊ 8 (72.7) 47 (61.8) 26 (55.3)

Time difference between MRI and date of death (years) 4.5±2.1 5.9±2.8 4.3±2.5◊ 2.1±2.5 2.1±2.0 3.2±2.5*

Clinical diagnosis at MRI

Control (%) 4 (66.7) 1 (7.1) 2 (5.7) 0 (0) 0 (0) 0 (0)

MCI (%) 2 (33.3) 11 (78.6) 16 (45.7) 0 (0) 1 (2.1) 6 (7.9)

Dementia (%) 0 (0) 2 (14.3) 17 (48.6) 11 (100) 46 (97.9) 69 (90.8)

Others (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1.3)a

Latest clinical diagnosis

Control (%) 3 (50.0) 1 (7.1) 0 (0) 0 (0) 0 (0) 0 (0)

MCI (%) 2 (33.3) 2 (14.3) 4 (11.4) 0 (0) 1 (2.1) 4 (5.3)

Dementia (%) 1 (16.7) 3 (78.6) 31 (88.6) 11 (100) 46 (97.9) 72 (94.7)
◊<0.10; *p<0.05 for comparison with SNAP. aThis case had a clinical diagnosis of Parkinson’s disease but a neuropathological diagnosis of progressive supranuclear
palsy. SNAP suspected non-Alzheimer’s pathophysiology, A β-amyloid, N neurodegeneration, MCI mild cognitive impairment

Wisse et al. Alzheimer's Research & Therapy          (2021) 13:100 Page 5 of 11



N+ group had a significantly higher prevalence of AD,
by definition, and LBD. SNAP had a significantly higher
prevalence of corticobasal degeneration (CBD), FTLD-
TDP, PART, and PSP than A+N+.

The association of neurodegenerative pathologies with
MTL structural measures
ADNI dataset: No significant associations were found
between the neurodegenerative pathologies and MTL
structural measures in the β-amyloid-negative
individuals (Table 2). However, at a trend level, a higher
TDP-43 score was associated with smaller hippocampal
volumes (Fig. 4). It should be noted that only five partic-
ipants had a TDP-43 score higher than 0, warranting
caution in interpreting these results.
UPenn dataset: In the β-amyloid-negative individuals,

a higher TDP-43 pathology score was significantly asso-
ciated with smaller anterior hippocampal volumes and
total hippocampal volumes (Table 2). Moreover, a higher
tau pathology score was significantly associated with
smaller anterior and posterior hippocampal volumes and
ERC and BA35 thickness (Fig. 5). A higher neuritic
plaque score was significantly associated with larger
PHC thickness. This is likely a spurious finding given
that this is in the opposite direction from what is

expected and because a (nonsignificant) negative correl-
ation of the same magnitude is observed in the ADNI
dataset.

Discussion
In this study, we found support that SNAP reflects a het-
erogeneous group of pathological diagnoses, including
FTLD-TDP, PSP, LBD, PART, TDP-MTL, and AGD.
Moreover, in the ADNI dataset, SNAP individuals had a
significantly greater number of different neuropatho-
logical diagnoses per individual than A+N+. In the sec-
ond part of this study, we investigated what pathologies
drive neurodegeneration in the MTL in the absence of
β-amyloid. We found associations of tau pathology with
hippocampal regions, ERC, and BA35 and of TDP-43
pathology with hippocampal volume in the Penn dataset
and for TDP-43 at a trend level in the ADNI dataset.

Neuropathological diagnoses
One of the major findings of this study is that individuals
with SNAP had a greater number of co-existing neuro-
pathological diagnoses than A+N+ in ADNI, suggesting a
more mixed profile in SNAP. Potentially, individuals with
SNAP have generally a more indolent course and reflect
the accumulation of multiple pathologies associated with

Fig. 2 Prevalence of the number of neuropathological diagnoses in SNAP, A−N−, and A+N+ in the ADNI (a) and UPenn (b) datasets. SNAP,
suspected non-Alzheimer’s pathophysiology; A, β-amyloid; N, neurodegeneration

Fig. 3 Prevalence on neuropathological diagnoses in SNAP, A−N−, and A+N+ in the ADNI (a) and UPenn (b) datasets. Note that the raw values
are displayed in Supplementary Table 3. #<0.10; *p<0.05. SNAP, suspected non-Alzheimer’s pathophysiology; A, β-amyloid; N, neurodegeneration;
ADNC, AD neuropathological change; AGD, argyrophilic grain disease; ARTAG, aging-related tau astrogliopathy; LBD, Lewy body disease; TDP-MTL,
TAR DNA-binding protein in the Medial Temporal Lobe; PART, primary age-related tauopathy; CBD, corticobasal degeneration; CVD,
cerebrovascular disease; FTLD-TDP, frontotemporal lobar degeneration with TDP-43 inclusions; PSP, progressive supranuclear palsy
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aging as the driver of their neurodegeneration. Indeed,
SNAP was slightly older than A+N+ in the ADNI dataset,
but this difference did not reach statistical significance. It
should be noted that we did not observe a higher number
of diagnoses in SNAP in the UPenn dataset. We
hypothesize that this difference stems from the fact that
the UPenn dataset is a more diverse cohort with regard to
inclusion of individuals with non-AD phenotypes and,
thus, SNAP may reflect more aggressive non-AD protei-
nopathies (e.g., FTLD spectrum disorders) than ADNI.
The age difference may also play a role, as individuals who
have neurodegeneration at a younger age, and, thus, are
younger at death, would be less likely to accrue other age-

related pathologies [30]. Age might therefore also be an
important factor when considering the etiology of SNAP.
No significant difference in the number of diagnoses was
found between SNAP and A−N− in either of the datasets.
This may partly be due to a lack of power due to the small
sample size of the A−N− groups, especially in ADNI
where in absolute terms the number of diagnoses in A−N
− was lower than SNAP. In the UPenn dataset, another
explanation may also be that we used hippocampal vol-
ume as a neurodegeneration marker, where in this dataset
with a broad range of phenotypes neurodegeneration may
actually be more prominent in other brain regions. It is
therefore possible that a number of A−N− were “misclas-
sified” as N−.
Additionally, we found support that AD is not the cause

of SNAP in the majority of the cases, a hypothesis that was
included in the naming of this group. Specifically, we found
support for a higher prevalence of AGD, LBD, PART, and
TDP-MTL, likely LATE, in the ADNI dataset and CBD,
FTLD-TDP, PSP, and PART in the UPenn dataset. It
should be noted that the results regarding the lower preva-
lence of AD (and also a higher prevalence of PART) in
SNAP are somewhat circular, as SNAP was defined by low
CERAD score, and, thus, was less likely to be considered
intermediate or high probability of ADNC. That said, the
CERAD score cutoff at autopsy was largely consistent with
in vivo measurement of β-amyloid status with PET so the
majority of SNAP cases would likely carry that designation
if based on in vivo biomarkers rather than neuritic plaque
burden at autopsy. Thus, this does not support the notion
that SNAP just reflects individuals on the AD continuum
with subthreshold amyloid. These findings line up with pre-
vious studies of neuropathological diagnoses in SNAP
reporting a low prevalence of AD [31, 32] but supporting
the presence of PART, AGD, and LBD [32, 33]. Import-
antly, there is a clear difference in the neuropathological

Table 2 The association of neurodegenerative pathologies in the MTL with MTL volume/thickness measures in β-amyloid negative
individuals. All pathologies are entered in one model, with time between scan and death and gender as covariates. Spearman rank
values are reported in the table

Whole Hippo Ant Hippo Post Hippo ERC BA35 BA36 PHC

ADNI

NP −0.11 −0.12 0.08 0.14 −0.13 −0.14 −0.31

Tau 0.02 0.09 −0.17 −0.31 −0.11 0.08 0.05

α-synuclein 0.00 −0.08 0.35 0.23 0.22 −0.08 0.26

TDP-43 −0.48◊ −0.40 −0.41 0.00 0.14 0.57◊ 0.49

UPenn

NP 0.16 0.14 0.13 0.20 0.17 0.09 0.32*

Tau −0.40** −0.34* −0.46*** −0.34* −0.31* −0.29◊ −0.08

α-synuclein −0.10 −0.03 −0.13 −0.11 −0.14 −0.16 −0.15

TDP-43 −0.30* −0.33* −0.26◊ −0.13 −0.25◊ −0.22 −0.11
◊p<0.10, *p<0.05, **p<0.01, ***p<0.001. NP neuritic plaques, TDP TAR DNA-binding protein, Ant anterior, Post posterior, ERC entorhinal cortex, BA Brodmann area,
PHC parahippocampal cortex

Fig. 4 Scatterplot of the association of TDP-43 with hippocampal
volume in β-amyloid-negative individuals in ADNI. TDP, TAR
DNA-binding protein
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diagnoses in the ADNI and UPenn datasets indicating
that the selection of the dataset contributes much to
underlying etiology and potentially the heterogeneous
results observed in previous studies with regard to
longitudinal neurodegeneration and cognitive decline
[8, 10–14].
In the context of the AT(N) framework [4, 5], this

means that some SNAP individuals can indeed be catego-
rized as A−T+(N+). However, it is likely that comorbid
pathologies, besides tau pathology, may also contribute to
the neurodegeneration observed in this group. The A−T
−(N+), as expected, is very heterogeneous.

The association of neurodegenerative pathologies with
MTL structural measures
In the UPenn dataset, we found an association of tau
pathology with hippocampal volumes, entorhinal, and
BA35 thickness. While the tau pathology score in this
dataset represents multiple confirmations of tau, the spe-
cific association with MTL regions involved in early
Braak stages and the high prevalence of PART in the β-
amyloid-negative group suggests that NFT pathology is
partly driving this association. Indeed, previous papers
have also found support for an association of Braak
stages of NFT pathology and MTL atrophy in PART [34,

Fig. 5 Scatterplot of the association of Tau (a–e, black dots) and TDP-43 pathology (f–h, grey dots) with medial temporal lobe structural
measures in β-amyloid negative individuals in the UPenn dataset. TDP, TAR DNA-binding protein; ERC, entorhinal cortex; BA, Brodmann area
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35]. The lack of an association of NFT pathology with
MTL measures in the absence of β-amyloid in the ADNI
dataset is puzzling. Potentially, this is due to a lack of
power as the correlation for at least one region, ERC,
was of a magnitude within the range of the Penn cohort
(r=−0.31). On the other hand, it should be noted that
the MTL NFT scores were virtually the same in A−N−
and SNAP individuals (data not shown). Perhaps the
range of the NFT score was too limited to detect an as-
sociation. It is surprising though that the A−N− group
had such high levels of NFT pathology without signifi-
cant neurodegeneration in the hippocampus. A possible
explanation is that there is a lag between the accumula-
tion of NFT pathology and neurodegeneration and the A
−N− group may not have had a significant load of NFT
pathology for a long enough time to develop neurode-
generation. Another possible explanation is that these
individuals are somehow resistant to the effects of NFT
pathology, as a recent study indicated reporting a num-
ber of cases with Braak II-III NFT pathology but still
healthy appearing neurons in the MTL and also limited
neurodegeneration in the neocortex [36].
Both studies on the other hand showed an association

of TDP-43 pathology with hippocampal volumes (al-
though only at a trend level in ADNI), whereas in the
UPenn dataset the association with anterior hippocampal
volume also reached significance (however, the difference
in correlation with the posterior hippocampus was only
marginal). The degree to which TDP-43 can be divided
into cases of FTLD-TDP versus LATE remains controver-
sial [37, 38]. Notwithstanding this issue, previous literature
indicates that TDP-43 has been found to be associated
with volume loss in the MTL [39–41], both in datasets in-
cluding and excluding cases which would meet common
pathological definitions of FTLD. However, two recent pa-
pers found no support for an association of TDP-43 path-
ology with hippocampal volumes in the absence or low
likelihood of Alzheimer’s dementia [42, 43], again both in
datasets including and excluding FTLD brains. This seems
in contrast with our findings; however, in the UPenn data-
set, a larger portion of the cases of TDP-43 pathology may
be FTLD-TDP-related, or at least these cases had more
typical phenotypic features of FTD, which may be driving
our findings. Indeed, when the FTLD-TDP cases are re-
moved from the analyses, there is no longer an association
between TDP-43 pathology and hippocampal volumes
(data not shown). On the other hand, the trend-level asso-
ciation of TDP-43 with hippocampal volumes in the
ADNI dataset, which some would consider as LATE (only
one case had FTLD-TDP) combined with the high preva-
lence of the neuropathological diagnosis of TDP-MTL,
provides some evidence for a role for LATE as a driver of
neurodegeneration in the absence of β-amyloid pathology
and as one of the causes of SNAP.

Limitations and strengths
A limitation of the current study is the small sample
size, especially for the A−N− groups, which likely limited
the power to detect differences with the SNAP group.
Relatedly, especially in the UPenn dataset, a significant
number of the segmentations were excluded (between
5.8 and 13.4%) for the extrahippocampal regions due to
image quality or severe atrophy further limiting the
sample size for certain analyses. Additionally, as for all
studies associating antemortem MRI with autopsy infor-
mation, our findings may have been diluted by the time
interval between the MRI scan and the time of autopsy.
Finally, we used semi-quantitative scores rather than
quantitative measures of pathology burden which were
obtained from only one hemisphere. This may have fur-
ther limited our ability to detect associations between neu-
rodegenerative pathologies and structural MRI measures.
A strength of this paper is the linkage of neurodegen-

erative pathologies to antemortem MRI, and especially
neurodegenerative pathologies for which currently no
in vivo biomarkers are available. Another strength is the
use of a newly developed and robust method for measur-
ing granular MTL subregional measures. Finally, an im-
portant strength of the current study is the inclusion of
two datasets, including patients with different pheno-
types and of different ages. The discrepant findings in
two different datasets allowed us to highlight that the se-
lection of dataset is an important factor in driving the
study findings, where both age and phenotype may influ-
ence what factors may drive neurodegeneration and
what neuropathological diagnoses may underly SNAP.

Conclusion
In this unique study leveraging a robust T1 pipeline for
MTL segmentation and two different antemortem MRI/
postmortem pathology datasets, we found further support
that SNAP has a heterogeneous, mixed profile with neuro-
pathological diagnoses such as LBD, AGD, TDP-MTL,
PART, FTLD-TDP, and PSP, which may be dependent on
the selection of the study population. Finally, we found
initial evidence for a role of TDP-43 and tau pathology as
drivers of neurodegeneration in the absence of β-amyloid.
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